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Abstract—The prosperity of Internet of Things (IoT) brings
forth the deployment of large-scale sensing systems such as smart
cities. The distributed devices upload their local sensing data to
the cloud and collaborate to fulfill the large-area tasks such as
pollutant diffusion analysis and target tracking. To accomplish
the collaboration, time synchronization is crucial. However, due to
the long range and device heterogeneity, accurate time synchro-
nization for a large-scale IoT network is challenging. Existing
GPS or NTP solutions either require an outdoor environment
or only have low and unstable accuracy. In this paper, we
propose AirSync, a novel synchronization method that leverages
the widely existed aircraft signals, ADS-B, to synchronize large-
scale IoT networks with nodes even in indoor environments.
But ADS-B messages have no time stamp and cannot provide a
reference time. We leverage the continuity of aircraft movements
to estimate the aircraft traveling time. Then devices that observe
common aircraft moving segments can calculate their time offset.
To obtain the time skew, we propose a combined aircraft linear
regression method. We also design a transitive synchronization
for devices that cannot observe common aircraft. We implement
a prototype of AirSync and evaluate its performance in various
real-world environments. The results show that AirSync can
obtain the sub-ms accuracy.

Index Terms—Time synchronization, large-scale, aircraft signal

I. INTRODUCTION

With the expansion of network scale and the increase of

node types, IoT networks can collect data from a large-scale

scenario. Various applications can be realized in large-scale

sensing systems such as earthquake hypocentre estimation [1],

pollution monitoring [2] and mobile secure authentication [3].

Taking earthquake hypocentre localization as an example, a

common method for hypocentre localization is Double Differ-

ence (DD) [4], which needs to synchronize multiple stations

to calculate the arrival time difference between P-wave and

S-wave for hypocentre localization. Because of lacking time

synchronization method for large-scale heterogeneous devices,

data from multiple sources is hard to align, hindering their

cooperations to extend the coverage for large-scale earthquake

warning and analysis.

To support the cooperation of large-scale IoT applications

with heterogeneous sensing devices, an accurate synchro-

nization method that can apply in heterogeneous devices is

desired. We also desire the method works for both indoors and

outdoors to adapt to different scenarios. Besides, the method

TABLE I: Comparison of common methods

GPS NTP [7] FTSP [6] Desired

Heterogeneity � � � �

Indoor � � � �

Synchronous

range
Global

Internet

reached

Dependes

on network

Tens of

kilometers

Accuracy ns˜ms 1˜100 ms us sub-ms˜ms

is desired to provide continuous synchronization service with

high precision. Taking hypocentre localization as an example,

if the time offset of two nodes reaches to 100 ms, the error

for hypocentre positioning will increase to 3 km, hindering the

prediction and quick response in the early rescue [5].

However, existing synchronization methods cannot meet

the requirements. We compare existing methods with the

requirements in Table I. FTSP [6] is a representative of the

time exchange based methods that broadcast time reference by

active communication in homogeneous networks. The methods

dedicated to homogeneous networks usually cannot cover a

large area because the multihop broadcasting brings accumula-

tive synchronization errors. Network Time Protocol (NTP) [7]

is a widely used method to synchronize heterogeneous devices

with Internet connectivity. It leverages network delay between

the devices and the server to calculate the local time offset.

But NTP requires stable network connection when synchroniz-

ing. When the network jitters, network delay estimating be-

comes difficult, causing errors during synchronization. Global

Positioning System (GPS) time service leverages satellites

to obtain accurate UTC time, which is accurate and valid

globally for heterogeneous devices. But unfortunately, GPS

signal cannot reach indoors, which greatly limits its application

scenarios. From the comparison in Table I, we can find none

of the existing methods can fulfil all the desired requirements.

In this paper, instead of using the weak GPS signal from

satellites, we take notice of the aircraft signal, which can be a

time source for large-scale time synchronization. The so-called

Automatic Dependent Surveillance-Broadcast (ADS-B) signal

is a broadcast message with the aircraft flight state. The carrier

frequency of the ADS-B signal is 1090MHz. Although it is

only a little bit lower than GPS, the ADS-B signal can easily

reach indoors because the altitude of aircraft is much lower

than the satellite. Besides, the ADS-B signal can be received978-1-7281-6630-8/20/$31.00 c© 2020 IEEE



dozens and even hundreds of kilometers away, which can sat-

isfy the basic large-scale time synchronization requirements.

Besides, according to the open data from OpenSky network

[8], ADS-B signal can cover a wide area and can be received

all day long to support our continuous synchronization.

Although the ADS-B signal has these promising character-

istics, there are challenges when using it for synchronization:

(1) ADS-B signal does not have any time information. We

try to take ADS-B packets as an event trigger, but received

packets are not strictly periodic, directly synchronize will

produce accumulative error caused by time drift. (2) Different
aircraft contribute uneven quality information for synchroniza-
tion results. For each aircraft, the signal noise is different.

How to utilize all aircraft information wisely is challenging.

(3) how to synchronize the nodes cannot receive the same
packet is a challenge. Although ADS-B signal can cover large-

scale scenario, signal will be lost caused by block or other

reasons, so nodes in long-range are hard to get the same

packet event. How to synchronize the nodes without common

received packets should be considered.

To solve these challenges, we propose AirSync, a novel

time synchronization method for large-scale heterogeneous

IoT networks. Fig.1 shows the framework of AirSync. AirSync

leverages the widely existing ADS-B signal as a common

event. Although we can not obtain time information from

packets, we leverage the common traveling distance of air-

craft observed by different nodes to calculate the interval of

matched packets. By this way, we can get the time informa-

tion without explicit timestamps. Integrated ADS-B antennas,

nodes can record ADS-B messages with a local timestamp for

each receiving ADS-B message, then upload the messages to

the cloud periodically. To reduce the transmission overhead,

AirSync designs a preprocessing at the end nodes to filter

retransmission packets and unnecessary information. Then the

cloud server will align the ADS-B messages to get the time

offsets of nodes. After obtaining multiple time offsets, AirSync

can establish a linear model to synchronize two nodes. To

avoid the inaccuracy caused by uneven noise from different

aircraft, we propose a CAR algorithm that smartly combines

the information from multiple aircraft. We also propose a

transitive synchronization method that uses relay nodes to

synchronize the nodes that cannot receive the same packets.

We implement the prototype of AirSync on laptops and

Raspberry Pi3 with commercial RTL2832U receiver and ADS-

B antenna. We deploy 5 nodes in the real-world environments

to evaluate AirSync. We run the experiments for 60 hours and

collect about two million ADS-B messages. The experimental

results show that the median of time offset error is 0.426 ms
and 0.882 ms for short- and long-range nodes, respectively.

The median of time skew error of AirSync is 4.56 ppm, which

is much smaller than the 30-50 ppm clock drift for IoT sensor

devices [9].

The contribution of this paper is summarized as follows.

• We propose a novel IoT time synchronization method

which leverages ADS-B signal to achieve a sub-ms ac-
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Fig. 1: AirSync uses the commonly observed ADS-B signal

as the synchronization event for long-range IoT nodes.

curacy for large-scale IoT networks.

• We address the challenges of using ADS-B for synchro-

nization. AirSync uses the common travelling time of air-

craft to eliminate the dependency on explicit time stamp

as reference. We design a CAR synchronization algorithm

to cope with the noises from different aircraft and obtain

more accurate estimation on the time skew. AirSync also

integrates the transitive method to synchronize remote

nodes.

• We implement AirSync and evaluate its performance by

real-world experiments. The results show that AirSync

can achieve sub-ms synchronization precision for the

heterogeneous IoT devices 22.9 km apart.

The rest of this paper is organized as follows. We discuss

the related work in Section II and introduce design details of

AirSync in Section III. We present the evaluation in Section

IV and conclude our paper in Section V.

II. RELATED WORK

Synchronization methods can be divided into two cate-

gories: external time source synchronization and internal mes-

sage exchange synchronization. External time synchronization

means the reference time is provided by the external accurate

time source. Message exchange time synchronization means

all the nodes in network are synchronized by message ex-

change, eventually all the nodes have the same clock.

External time synchronization source mainly includes

Global Positioning System (GPS) time server and timekeeping

radio station synchronization (e.g., WWVB [10] in the US and

JJY [11] in Japan). GPS time synchronization lets nodes get

UTC from GPS time servers, which can synchronize global-

range heterogeneous devices. However, the signal of GPS and

WWVB have poor penetration through walls [12].

For message exchange synchronization, NTP is a com-

mon method for nodes without resource constraint. A client

estimates network delay to compensate error after getting

time from a time server. However, the estimation error of

NTP will increase due to network jitter, even reaching hun-

dreds of milliseconds. For the low-power IoT nodes with

limited resources [13], there are many RF communication

synchronization methods like RBS [14], FTSP [6], Glossy

[15], CESP [16], R-Sync [17]. RBS [14] synchronizes by

sending a message to the target devices, then devices add
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Fig. 2: Overview of AirSync.

timestamp when they receive the message, the node calculates

time offset by exchanging timestamp. Compared with one-

hop synchronization of RBS, FTSP [6] can achieve large-scale

time synchronization of multi-hop network. All these methods

need devices to communicate with each other, but they cannot

realize in heterogeneous devices with incompatible radios.

Recently, some event-driven synchronization methods were

proposed for IoT device like WizSync [12] and PSync [18].

WizSync leverages Wi-Fi beacon as a trigger to synchronize

two ZigBee nodes. PSync leverages visible light in building to

synchronize multiple ZigBee nodes. However, these methods

have a limit synchronization range which cannot satisfy the

large-scale synchronization requirement.

Besides, there are some related works based on ADS-B sig-

nal: Calvopalomino.et.al realize Nanosecond-precision time-

of-arrival estimation by SDR receiver [19]. Manuel Eichel-

berger.et.al use ADS-B signal to realize indoor localization

[20]. Localization also requires time synchronization, com-

pared with their work, our design is for a completely different

scenario. In our setting, we have no UTC for reference, so

it’s impossible to build a linear model directly. Besides, nodes

can not exchange messages directly and we do not have node

location information to calculate the propagation time delay.

III. DESIGN

A. Overview

Figure 2 shows the overview of AirSync, which contains

4 modules: packets collection, data processing, combination

aircraft synchronization, and transitive synchronization. Pack-

ets collection module aims to receive ADS-B packets and

preprocesses them, the module receives messages by picking

out the interesting location and speed packets to reduce the

transmission overhead. Then packets are sent to a cloud server

and Airsync enters the data processing module. Uploading data

is time window based and the initial window length is 5 min-

utes in our system. Window length will be extended if received

packets are not enough to synchronize. The server will match

data, calculate system time difference by local timestamp

and remove outlier. If the number of matched packets from

the same aircraft is greater than 3, we judge the number of

packets can support direct synchronization. AirSync will enter

combination aircraft synchronization module. Otherwise, our

system will go into the transitive synchronization module.

In transitive synchronization module, we will search for all

possible synchronized paths by bidirectional search and use

the score-based method to pick the relay node to optimize

accuracy. If the number of packets is not enough for transitive

synchronization, the server will give feedback to the device to

extend the next uploading time window. If the synchronized

time skew is an outlier compared with the historical record,

AirSync will also extend the uploading window for collecting

more ADS-B messages.

B. Data Preprocessing

Figure 3 shows the structure of ADS-B packet. The first

key message is 24-bit ICAO, which can uniquely identify

one aircraft. We use ICAO to classify the information from

different aircraft. ADS-B adds flight state into a 56-bit data

field. In the data field, the first 5 bits are used to indicate the

type of data. The type includes speed, location, altitude and

so on [21]. That means we cannot receive all the interesting

information from a single packet. To verify the reception of

ADS-B signal, we use homogenous and heterogeneous devices

to receive signal at different distances. Figure 4 shows the

number of matched packets and the match rate during 5 min-

utes. As shown in Figure 4, in the worst case, heterogeneous

devices in long distance still have 75 matched packets which

can provide enough information for our method.

Raw ADS-B data is highly redundant for our method,

including the caution packets and retransmission packets. Be-

sides, local timestamps may also cause jitter because receiver

just receives retransmission packets or system schedule delay.

Therefore, the preprocessing of the original data is necessary

to improve the synchronization accuracy of AirSync. There

are two parts in AirSync data preprocessing:

1) Local Data Preprocessing: In the IoT node side, we

first filter out all signal except position and speed according

to type code in the data field. Then if two packets from one

aircraft have the same location, the later packet should be a

retransmission packet and we filter out it. Signal preprocessing

at the nodes not only improves signal quality, but also reduces

the transmission overhead to the server.

2) Cloud Server Data Preprocessing: After local data pre-

processing, collected data are sent to the server. The server

will first match packets from the same aircraft with the

same location, then delete the aircraft information matches

only one packet which cannot provide effective information.

Then it calculates the system time difference according to
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one aircraft.

each matched packet local timestamp. Finally, we use Sta-

tisticalOutlierRemoval filter [22] to remove outliers.

C. ADS-B Linear Regression Model

In AirSync, we build a linear model in order to describe

the time difference between two nodes. The basic regression

equations can be written as:

tn
A = ka(Tn −T1)+ba +Tda + ea (1)

tn
B = kb(Tn −T1)+bb +Tdb + eb (2)

where tn
A and tn

B are receiving time of the n-th matched message

at nodes A, B respectively. ka, ba, kb, bb are time skew and

time offset relative to UTC time of node A and node B. Tn
is the transmit time of n-th match message. Tda, Tdb are the

propagation time of signal from aircraft to nodes A and B. ea,

eb are noise. The receiving time difference between A and B

can be expressed as:

tn
A − tn

B = k(Tn −T1)+b+Td + e (3)

where k, b is the time skew and time offset between two

nodes. Td represents the signal propagation time difference

between nodes A and B. e is noise error in data. If we can

obtain Tn directly from packets, we can estimate k, b easily

by linear regression. However, ADS-B signal does not have

time information about when the signal is sent. Therefore, it is

impossible to capture regression results directly from Equation

(3). To solve this problem, we leverage the common aircraft

flight time between two packets. As shown in Figure 5, we can

obtain relative flight time by the position and speed decoded

from the packet, i.e.

Tn −T1=̇
‖Pn −P1‖2

V̄1,n
(4)

Where pn is the position where the n-th matched message

transmits. V̄1,n is the average flight speed between two receiv-

ing packets. The equation has the limitation that the aircraft

route should be a straight line. Besides, using the average

speed will reduce the accuracy of flight time. So we divide

the whole flight time into multiple segments. Each segment

is the time between two matched position packets. Then we

accumulate these segments as flight time. In this way, the flight

path of the aircraft can be considered as a straight line in

a short time. Even if the aircraft is hovering in the air, the

accurate flight distance can be obtained. So Equation (4) can

tranform into Equation (5):

Tn −T1 =
n−1

∑
i=1

‖Pi+1 −Pi‖2

Vi,i+1
(5)

Besides, the error caused by propagation time difference Td
will have some influence on our synchronization. If prop-

agation distance difference is 30 km, the propagation time

difference will be 0.1 ms. Because we do not know the location

of nodes in most real scenes, we regard this error as noise

and try to reduce this effect in the later design. So the final

regression model is Equation (6).

tn
A − tn

B = k(
n−1

∑
i=1

‖Pi+1 −Pi‖2

Vi,i+1
)+b+ e (6)

Because speed changes less in a short time, Vi,i+1 is set to

the speed decoded by the speed packet closest to the i+1-th

matched packet. To investigate the speed and location packet

reception, we show the packet reception result from 7 aircraft

in 2 minutes in Figure 6. It shows that it is uncertain whether it

will receive the speed message after location message because

receiving ADS-B signal is uncontrollable. To overcome this

problem, we leverage greedy algorithm to design a discarding

mechanism, it searches for speed information from the same

aircraft before and after the target position information, grad-

ually expanding search until the first speed message is found

or reaches the time threshold (10s). Finally, if we can not find

speed information, this matched position will be discarded. By

this way, each position message can find a valid speed.

D. Combination Aircraft Synchronization

For a large-scale indoor scenario, the number of matched

packets from one aircraft may not be enough to obtain high

accuracy. Hence, we try to leverage packets from multiple

aircraft. However, because of the location difference of air-

craft, information from different aircraft may have inconsistent

regression results. If we just choose one of them as a final

result, the result will become unstable and may have a large



Fig. 6: The reception of location and

speed packets in two minutes.

Fig. 7: The results without CAR algo-

rithm.
Fig. 8: The results of CAR algorithm.

synchronization error. Figure 7 shows the original regression

results of three aircraft directly synchronized.

All of these factors drive us to combine multiple aircraft

information. That means we regard multiple aircraft as one

by combining these matched packets of the aircraft. There are

some advantages of combining multiple aircraft: (1) When the

number of matched packets from one aircraft gets smaller,

combining information from multiple aircraft can take full

use of matched packets. (2) As Figure 6 shows, one aircraft

is hard to cover entire time horizon, combining aircraft can

extend the coverage of information on the time horizon which

can promote the accuracy of time skew estimation. To utilize

packets from multiple aircraft, we need to shift packets relative

time of aircraft into the same time axis. We use the packet

receiving timestamp as time information between aircraft.

Using packets timestamp will cause cumulative errors for time

skew in theory. In the evaluation session, we prove that this

cumulative error will not have a big impact on time skew

estimation.

We design an algorithm for combining multiple aircraft

called Combine Aircraft Regression (CAR) algorithm. There

are two inputs for this algorithm, one is a set PI =
{pi f 1, pi f 2, ...}. The set includes packets information pi f i
consisting of matched packets location Pi, valid speeds Vi and

both local timestamps T S1
i , T S2

i , which is grouped by aircraft

(ICAO) f i. The other one is the interval from the system start

to first matched message for each flight ts = {t f 1, t f 2, ...}, we

call this duration time the first matched time. The output is

the time skew and time offset.

In the CAR algorithm, we first pre-calculate each aircraft

subset to find the time relation inside matched packets of

single aircraft. then we can get the result set: PreSynResult =
{PreSync(sd f 1),PreSync(sd f 2), ...)}, where PreSync() func-

tion is the calculation of packets relative time and system

time difference. Each aircraft packets set pre-calculates result

PreSync(sd f i) including the packet relative time T i
p j and the

system time difference calculated by timestamp Sysi
di f f j for

each packet. Then we build a summary set ComRes including

every aircraft information. Each matched packet relative time

T i
p j from each aircraft set pi f i will add corresponding first

matched time t f i. By this way, all the packets will be arranged

Algorithm 1: CAR Algorithm

Input :

Packets information grouped by aircraft:

PI = {pi f 1, pi f 2, ...} (|PI|= N);
pi f 1 = {{P1,V1,T S1

1,T S2
1}, ...};

First matched time:

ts = {t f 1, t f 2, ...};

Output:
Combined regression results:

CARk,CARb;

1 PreSynResult = {PreSync(pi f 1),PreSync(pi f 2), ...)}
PreSync(pi f 1) = {(T 1

p1,Sys1
di f f 1),(T

1
p2,Sys1

di f f 2)...}
2 if PreSynResult!= /0 then
3 for i in N do
4 for j in |PreSync(pi f i)| do
5 ComRes add (T i

p j + t f i,Sysi
di f f j)

6 end
7 end
8 end
9 else

10 return Exit, Cannot synchronized directly
11 end
12 CARk= Sync(ComRes)−k
13 CARb= Sync(sd f θ |θ = argmaxθ |sdfθ |)−b

into the same time axis.

Then the algorithm synchronizes ComRes, where Sync()
function is the Equation (6) synchronization model. After

synchronization, AirSync uses the regression result k as CAR

algorithm time skew k (Equation (7)). Because we think that

combining aircraft set can extend information time horizon

and promote the accuracy of time skew.

CARK = Sync(ComRes)−k (7)

For time offset estimation, the propagation time difference

is the main error source, so we should reduce the error as much

as possible. Empirically, if the matched number is large, the

aircraft should locate at a more balance place between two

nodes and both nodes can receive enough ADS-B messages
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to match. Therefore, there is less propagation time difference

for the aircraft which has more matched packets. So in CAR

algorithm, we synchronize the aircraft which has the most

number of matched packets, then we use the synchronization

time offset as B of CAR algorithm as Equation (8). Figure 8

shows the CAR algorithm synchronization result of 3 aircraft

in Figure 7. We can find that CAR algorithm synchronization

can get a better result than the synchronization result of any

one of the three.

CARB = Sync(sd f θ |θ = argmax
θ

|sdfθ |)−b (8)

E. Transitive Synchronization

In the real scenario, nodes may have few matched packets

to synchronize because of node’s biased position or signal

missing. In this situation, we try to leverage the transitivity

of synchronization to synchronize target nodes. As Figure 9

shows, if node A and node D tend to synchronize but do not

match enough packets, nodes B and C both have some matched

packets with them, B and C will become the relay nodes. The

server will choose one of them to synchronize target nodes

indirectly. The server uses a heuristic optimization algorithm

to construct a criterion to choose the best relay node. The

process of transitive synchronization shows in Figure 10, if two

nodes A, F have less matched messages to synchronize, we use

bidirectional search algorithm [23] to find all feasible nodes

as relay nodes. Bidirectional search can reduce the searching

space and find the alternative synchronization path rapidly.

Then we can find three paths: A−B−F,A−C−F,A−D−F .

The server will traverse all alternative nodes between them

and calculate the number of matched packets, normalize the

number of matched packets on each side, add normalized

Fig. 11: Experiment settings: (a) Deployed nodes of AirSync.

(b) Raspberry Pi3. (c) GPS module. (d) ADS-B antenna and

receiver.

results on each path to calculate scores for all relay nodes.

For instance, the score of node B is:

ScoreB = N(Nab)+N(Nb f ) (9)

where function N() is Min-Max normalization. Nab, Nb f are

the numbers of matched packets for nodes A, B and nodes B,

F. By calculating and comparing final scores, server can choose

the node with the highest score as the relay node. Besides, it’s

hard to ask for time alignment for two sides of the path. If

the start time difference of two synchronization sides is less

than WindowLength
2 (150 s), these two sides are considered to be

capable to transitively synchronize. If the start time difference

is too large, an accumulated error will affect our accuracy.

IV. EVALUTION

A. Experiment setting

In order to evaluate the performance of AirSync, we conduct

experiments in the real world. We deploy 5 IoT nodes where

the location of nodes shows in figure 11(a) and nodes detail

shows in Table II. nodes A, B and C are deployed in campus

and node D and E deploy in residential zones. We modify open

source project Dump1090 [24] for nodes to obtain accurate

local timestamps by reducing the data length in each batch. We

use the commercial RTL2832u receiver and ADS-B antenna

(shown in Figure 11(d)) to receive ADS-B signal, the total

costs of devices are less than 60 dollars which supports

possibilities of AirSync extensive deployment on IoT nodes.

We realize the prototype on laptop and Raspberry Pi3 (Figure

11(b)). To evaluate AirSync in a long range, we synchronize

node A and node C in a distance of 22.9 km. Node C is

Raspberry Pi3 as a heterogeneous node. Nodes B and C are

used to evaluate AirSync in a short range scenario. Nodes D

and E are set as chance nodes which have unbalanced data size



Fig. 12: Synchronization error of

AirSync and NTP during 5 hours.
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Fig. 13: CDF of the error of time offset and time skew of AirSync and NTP

in the short and long range.

TABLE II: Summary of experimental nodes

Node Device
CPU

Frequency
Total
time

Total
number of

packets

A Dell Latitude5290 1.6GHz 43.2h 493800
B Dell-G3 2.2GHz 60.1h 626796
C Raspberry Pi3 1200MHz 60.1h 726128
D ThinkPad T430 2.6GHz 16.4h 8433
E Lenovo F41 1.8GHz 21.1h 10050

comparing with the other three nodes to evaluate transitivity

design. To evaluate AirSync in a mobile scenario, we moved

node B about 17 km on the ring road of Beijing according to

the moving path in Figure 11(a) and synchronize with node A.

We choose GPS time with PPS signal (shown in Figure 11(c))

as our ground truth which accuracy reaches microsecond level.

Because GPS can not reach indoors, so we leverage extension

cord to stick GPS module out of the window.

B. Performance of AirSync

To evaluate the performance of AirSync, we first evaluate

AirSync time error in a short range by using node B and node

C. Both of the two nodes connect to the same Wi-Fi node

which setting expected to have less network jitter and get a

better NTP synchronization result. Figure 12 shows the time

error in 300 minutes for AirSync and NTP. AirSync average

time error is about 0.513 ms and NTP is 3.672 ms, NTP has

a larger average time error and has more jitter. So AirSync

result is more accurate and stable.

Figure 13(a) shows cumulative distribution function (CDF)

of time offset estimation error. In the experiment, we set node

B and node C as short-range devices, node A and node C

as long-range devices and synchronize about 70 times. The

result shows that the worst error for AirSync is less than 8 ms,

the error median of short range is 0.426 ms and 0.882 ms for

long range, both of them reach sub-millisecond level. AirSync

in long range will bring some extra errors for time offset

estimation. The main reasons include 1) Propagation time

differences bring some effects on the time offset estimation.

2) The reduction of the number of matched packets affects the

accuracy of synchronization.

NTP in a short range and long range both have small

errors when connecting to the Wi-Fi network. But when

connecting to the mobile network, time error will increase

obviously because of the network jitter. To evaluate the NTP

in the 4G network, we connect node B to the 4G network

and synchronize with node A. As Figure 14 shows, NTP

synchronization average time error increases to 20 ms in the

4G network.

Figure 13(b) shows the estimation error of time skew. The

median error in long range is 4.456×10−6 (4.456 ppm). This

error is less than NTP time skew in short range. Comparing

with 30-50 ppm time skew for IoT devices, this error is

significantly reduced.

On the other hand, AirSync not only has the advantage

of accuracy comparing with NTP. NTP can only synchronize

when the network is available, but AirSync can also capture

data without network and align these data when the network is

available. The recorded ADS-B messages can also transmitted

by LEO satellite network [25], but it costs too much.

C. Performance of CAR algorithm

To evaluate the effectiveness of CAR algorithm, we design

experiments to evaluate time offset and time skew respectively.

We synchronize two nodes 70 times, compare the 3 regression

methods in Figure 15. Where overall regression is to regress all

matched points. Weighted average refers to assigning different

weights to different aircraft based on the number of matched

packets. The single best means the regression result of aircraft

which has the most matched packets will become AirSync’s

final result. Figure 15(a) shows that the most single method

has the best result comparing with the other two regression

methods. So using the aircraft with the most matched packets

can reduce the propagation time difference effect. Figure 15(b)

shows the time skew estimation errors for three methods. It

shows that the overall regression has the best result for time

skew estimation. So for time skew estimation, we need to

expand the time range of packets, in case the matched packets

are concentrated in a short period of time and reduce time

skew accuracy.



Fig. 14: Performance of AirSync with

NTP in different network connections.

(a) Time Offset (b) Time Skew

Fig. 15: CDF of the estimation error of different regression methods.

Fig. 16: CDF of time skew estimation

error when using different synchroniza-

tion window lengths.

Fig. 17: CDF of the time offset error

for transitive synchronization.

Fig. 18: The results in mobile scenarios.

A is AirSync, N is NTP.

Besides, when designing CAR algorithm, we can only get

the time relationship between packets from the same aircraft,

so when taking aircraft into the same time axis, we can only

use the local timestamp, it will affect time skew accuracy. In

theory, it has more effects when extending signal reception

time. In Figure 16, we set AirSync synchronization signal at

different time scales to see the time skew errors. The result

shows time skew regression results in different time scales

have a similar estimation error. Therefore shifting aircraft to

uniform time axis will not affect time skew estimation a lot.

D. Performance of Transitive Synchronization

To evaluate transitive synchronization, we suppose node

A and node C in Figure 11(a) cannot directly synchronize,

then choose node B as the main relay node. Node D and

node E have unbalanced data size, and bring some intermit-

tent synchronization chances. The server needs to pick the

best relay node according to the node score when multiple

paths appear. In our experiment, we compare the time off-

set synchronization error of direct synchronization, transitive

synchronization, worst transitive synchronization and NTP

synchronization. The worst transitive synchronization is that

when there multiple relay nodes, we choose the node which

has the lowest node score. Figure 17 shows the experiment

result, transitive synchronization result median is 2.057 ms, it’s

still better than NTP method, whose synchronization median is

2.368 ms. Comparing with the worst transitive result, transitive

synchronization can promote accuracy. Transitive synchroniza-

tion has more errors comparing with direct synchronization,

there are two main error sources: 1) Accumulated errors for

each side synchronization of a transitive path. 2) Because the

two sides synchronization is not strict alignment, the difference

in synchronization start time will cause a time offset error.

Because of these errors in transitive synchronization, AirSync

will not attempt to transitively synchronize if the nodes can

directly synchronize.

E. Mobile scenario

In the real world, nodes may work in different scenarios,

we try to simulate these scenarios to evaluate AirSync perfor-

mance. Firstly, some nodes are mobile when working like the

nodes on the vehicle or on the buoy. So we evaluate AirSync

synchronization in a mobile scenario. In the experiment, node

B in Figure 11(a) connects to the 4G network and node A

connects to the Wi-Fi network, then node B moves along the

moving path in Figure 11(a) and synchronizes with node A.

The result shows in Figure 18. The time offset error median

of AirSync in mobile scenario is 1.113 ms, close to the static

scenario error median 0.882 ms. So AirSync has a stable

synchronization accuracy in a mobile scenario. But the mobile

scenario has an obivous effect on NTP synchronization in a 4G

network because of the network jitter caused by base stations

handover. The synchronization error increases from 20 ms to

95.6 ms. Therefore, AirSync has better performance than NTP

in a mobile scenario.



Fig. 19: Cumulated error without synchronization chance.

F. Low-power scenario

For some low-power consumption devices, periodic dor-

mancy is the basic characteristic [26]. For these devices, we

evaluate cumulated errors of time after an interval without

synchronization, we try to simulate periodical node synchro-

nization in this way. we set the duration as 10, 20 and 30

minutes and find the time errors after these durations. Figure

19 shows the results of 80 synchronizations. The cumulated

error will increase with the duration extending, there are

84.6%, 75.6%, and 64.1% of errors less than 10 ms in 10,

20, 30 minutes, the cumulated error median in 30 minutes is

7 ms, which is acceptable in most data fusion applications.

V. CONCLUSION

In this paper, we realize time synchronization for large-

scale, heterogeneous devices inspired by ADS-B signal. we

use data in ADS-B signal to build a linear regression model.

Then we design a CAR algorithm to fully utilize packets

from different aircraft to promote regression accuracy. For the

nodes that cannot directly synchronize, we design transitive

synchronization to promote the robustness of AirSync. Fi-

nally, AirSync realizes sub-millisecond level synchronization

accuracy for long-range, heterogeneous nodes. In evaluation,

we set 5 nodes in the real world and receive different time

ADS-B signals to test AirSync. We compare AirSync with

NTP and GPS in different scenarios. Besides, we evaluate the

performance of our CAR algorithm and the transitive module.

For special scenario evaluation, we test AirSync in mobile and

low-power consumption scenarios, we find the node move will

not affect AirSync a lot, and the low-power situation will bring

acceptable cumulated errors.
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synchronization protocol,” in Proceedings of ACM Sensys, 2004.

[7] D. L. Mills, “Internet time synchronization: the network time protocol,”
IEEE Transactions on Communications, vol. 39, no. 10, pp. 1482–1493,
1991.

[8] “Opensky network,” https://opensky-network.org/, accessed January 2,
2020.

[9] Z. Li, W. Chen, C. Li, M. Li, X.-Y. Li, and Y. Liu, “Flight: Clock cal-
ibration using fluorescent lighting,” in Proceedings of ACM MobiCom,
2012.

[10] “WWVB,” https://www.nist.gov/pml/time-and-frequency-division/
radio-stations/wwvb, accessed January, 2020.

[11] “JJY,” http://jjy.nict.go.jp/jjy/index-e.html, accessed May, 2019.

[12] T. Hao, R. Zhou, G. Xing, M. W. Mutka, and J. Chen, “Wizsync:
Exploiting wi-fi infrastructure for clock synchronization in wireless
sensor networks,” IEEE Transactions on Mobile Computing, vol. 13,
no. 6, pp. 1379–1392, 2014.

[13] X. Zheng, Z. Cao, J. Wang, Y. He, and Y. Liu, “Interference resilient duty
cycling for wireless sensor networks under co-existing environments,”
IEEE Transactions on Communications, vol. 65, no. 7, pp. 2971–2984,
July 2017.

[14] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” USENIX operating systems design
and implementation, vol. 36, pp. 147–163, 2002.

[15] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with glossy,” in Proceedings of
ACM/IEEE IPSN, 2011.

[16] F. Gong and M. L. Sichitiu, “Cesp: A low-power high-accuracy time
synchronization protocol,” IEEE Transactions on Vehicular Technology,
vol. 65, no. 4, pp. 2387–2396, 2015.

[17] T. Qiu, Y. Zhang, D. Qiao, X. Zhang, M. L. Wymore, and A. K.
Sangaiah, “A robust time synchronization scheme for industrial internet
of things,” IEEE Transactions on Industrial Informatics, vol. 14, no. 8,
pp. 3570–3580, 2017.

[18] X. Guo, M. Mohammad, S. Saha, M. C. Chan, S. Gilbert, and D. Leong,
“Psync: Visible light-based time synchronization for internet of things
(iot),” in Proceedings of IEEE INFOCOM, 2016.

[19] R. Calvo-Palomino, F. Ricciato, B. Repas, D. Giustiniano, and
V. Lenders, “Nanosecond-precision time-of-arrival estimation for aircraft
signals with low-cost sdr receivers,” in Proceedings of ACM/IEEE IPSN,
2018.

[20] M. Eichelberger, K. Luchsinger, S. Tanner, and R. Wattenhofer, “Indoor
localization with aircraft signals,” in Proceedings of ACM SenSys, 2017.

[21] S. Junzi, H. Jacco, and E. Joost, “ADS-B decoding guide.” https:
//adsb-decode-guide.readthedocs.io/en/latest/content/introduction.html.

[22] “Statisticaloutlierremoval filter,” http://pointclouds.org/documentation/
tutorials/statistical outlier.php, accessed May, 2019.

[23] G. Nannicini, D. Delling, L. Liberti, and D. Schultes, “Bidirectional
a search for time-dependent fast paths,” in Proceedings of Springer
International Workshop on Experimental and Efficient Algorithms, 2008.

[24] “Dump1090 project,” https://github.com/mutability/dump1090.

[25] D. Xia, X. Zheng, P. Duan, C. Wang, L. Liu, and H. Ma, “Ground-
station based software-defined leo satellite networks,” in Proceedings of
ICPADS, 2019.

[26] X. Zheng, Z. Cao, J. Wang, Y. He, and Y. Liu, “Zisense: Towards
interference resilient duty cycling in wireless sensor networks,” in

Proceedings of ACM, SenSys, 2014.


